
1

Distributed Scheduling and Optics to Host
ONDM 2019

ODCNs 
Fundamental Considerations
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Why ODCNs?

 Higher Aggregate Bandwidth Needed
 Host bandwidth demands are exponential (see Jupiter Rising [1])
 Hence, keeping the DCN scale require exponential ToR switch aggregate bandwidth AGGBW [2]

[1] A. Singh et al., “Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google’s Datacenter Network,” in SIGCOMM, 2015, pp. 183–197.
[2] W. M. Mellette, A. C. Snoeren, and G. Porter, “P-FatTree: A multi-channel datacenter network topology,” 

in Proceedings of the 15th ACM Workshop on Hot Topics in Networks, 2016, pp. 78–84.

[1]
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And the Problem is? 

4x By introduction on
Optical switching

[3] ITRS2.0 2015 System Integration Vol 1

[3] 

 Silicon manufacturing technology started to saturate (“The end of Moore law”)
 VLSI clock frequency stay flat since the end of the 90’s 
 While transistor area scaling is maintained, wire density start saturating
 Idea area scaling is ~0.54 transistor area reduction
 Effective wire density scaling is ~0.7 

 Power density per mm2 scales ~0.7

 Can switches aggregate bandwidth grow exponentially?
 For fixed clock frequency 2x BW => 2x data path width (wires)

 With ideal area scaling 0.54 switches scale too
 => 2x cells * 0.54 area => ~constant chip size, logic power x0.7

 Today true area scaling is saturating ~0.7
 => 2x cells * 0.7 area => 1.4 chip size
 Logic power has to grow to drive long distances
 => power of the chip grows

 What if wire density scaling is only 0.8 ?



4

Fundamentals
PetaCloud collaboration with Prof’ Yithak Birk (Technion)
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From Electrical Packet Switching 
to Optical Circuits

 Ethernet networks are “packet switching”:
• Small message segments are sent over the network

• Packets from different messages can mix on the same wire

• When the wire is busy with a packet, others wait at the buffer

 Optical network have no Buffers
• Once data enters the fabric it cannot wait for scheduling

• Packets are destroyed if they “collide”

Light must use the Green Wave 

ODCNs use Circuit Switching instead of Packet Switching
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Centrally Controlled ODCNs 

 A Central Controller should
 Know the required traffic matrix
 Compute light circuits allocation 
 Online: A single permutation, or Offline: a TDMA schedule
 To avoid starvation schedule offline the entire matrix

 Send the configuration over to the network elements

 The following system phases are required

 Pipelining can help but slowest phase dictate throughput == slot time

Collect 
Demands

Circuit 
Scheduling

Configuration
Delivery

Switch 
Adjustment

Circuit 
Operation

t

System 
Phase

OCS

Optical Circuits 

Scheduler

OCS OCS OCS

OCS
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Central Scheduling Fundamental Limitations: 
Demand Collection
 We calculate the size of the traffic demand matrix = [D] = N x N 
 The time it takes to collect the Traffic Matrix = TD

 Assuming TOR as an aggregation point the matrix size is N x N
 Assuming resolution of B bytes per entry and no overhead
 Control network bandwidth of CBW

 TD = B*N2/CBW

 Example:
 N=1000 
 |D| = 1000*1000 = 1e6
 Entry is 2 bytes
 CBW = 100Gbps = 12.5GB/s
 TD = |D| * 2  / 100Gbps = 2e6/12.5e9 = 160usec

1

N

R

Traffic Demands Collection is a Slot Time Limiter
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Central Scheduling Fundamental Limitations: 
Configuration Time
 Configuration Data Size – DC, and sending time TC
 The amount of data the central resource allocator/scheduler has to deliver

 Most ODCNs built using Crossbar Optical Switches (OCS) or 
Broadcast and Select Switches (BSS)
 Since optical circuits cannot intersect (on same color/mode/angular momentum) 

 How much data is required to configure OCS/BSS that carry F new flows?
 Common representation is the permutation
 Assuming K ports switch log2(K) bits for representing ports
 Permutation is K*log2(K) bits

 How much time does it take to configure all switches?
 Example: 100 L2 switches of K=1000 (like RotorNet)
 K=1000, log2(K) = 10
 DC = 1000*10*100 = 1e6 [bit]
 TC = DC/ CBW = 1e6 / 100Gbps = 1e6/100e9 = 10usec

OCS
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Configuration Delivery is NOT negligible
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Central Scheduling Fundamental Limitations: 
Circuit Operation
 How long does take the Light to cross the data center?
 We denote it TL

 The speed of light in the refractive fiber is ~5nsec/meter

 How far apart are hosts from each other?
 The most compact distance geometric shape: Circle
 A realistic approximation: Square

 Most packed Floor Plan calculation for T ToRs
 Rack Width 60cm, Depth 100cm, Isle 100cm (on the depth side)

 Nw*Nd=T, Nw*0.6=Nd*2.0 =>  𝑁𝑑 =  3𝑇
10

 Example: T=1000 

 =>  𝑁𝑑 =  3∗1000
10 = 17 => Nd = 17, Nw = 59

 Max Manhattan distance between racks = 2.0*17+0.6*59=69m
 Max latency between racks TL =~ 0.3usec

Intrinsic Propagation Latency is < 0.5usec
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Taxonomy Of Circuit Scheduling Options

Online/Offline
All DemandsFlow at a time

Solstice
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Taxonomy Of Circuit Scheduling Options

Online/Offline
All DemandsFlow at a time
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Taxonomy Of Circuit Scheduling Algorithms

Online/Offline
All DemandsFlow at a time

RotorNet
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Central Scheduling Fundamental Limitations:
Computation Complexity
 Scheduling problem: how to allocate light paths to meet the traffic demand

 To avoid potential starvation allocate a complete “Schedule” of multiple “slots” 

 Single Maximum Matching (non weighted) Hopcroft Karp
 complexity 𝑂 𝐸 𝑉 = 𝑂(𝑁  3 2)
 Assuming Clos where V=N/k and E = N (permutation at minimum  - each host send to just one other)

 Solstice: a leading single hop algorithm
 Complexity 𝑂(𝑁2𝑙𝑜𝑔2(𝑁))

 Eclipse: utilizing available multi hop paths (optical, electrical, optical…)
 Complexity is even higher

Dynamic Scheduling Time is not Scalable
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Central Scheduling Faith

 What can be done?
 Fixed Schedule RotorNet
 Support All-to-all demand, make any demand all-to-all
 Pay in latency 

 Distributed Scheduling
 Tradeoff the “infinite” bandwidth of Optical Fibers with less accurate scheduling
 Lose some bandwidth, win much time
 Avoid both requirements collection, offline scheduling and configuration fundamental limits

Central Scheduling is a Dead End

New Architectures Enable ODCN

Collect 
Demands

Circuit 
Scheduling

Configuration
Delivery

Switch 
Adjustment

Circuit 
Operation

t

100us >>100us 10us 1us 1us N=1000 @ 100Gbps 
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The Hybrid ToR Paradox
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Motivation for ODCNs?

Saturation of
Electrical Packet Switches 

Aggregate Bandwidth
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Avoiding the Electrical Switch BW Bottleneck 

 Our motivation for ODCN is Saturation of EPS Aggregate Bandwidth
 Hence  we must avoid using Electrical ToR
 Otherwise they become our Bisectional Bandwidth Scaling bottleneck

We assume Electrical ToR have saturated BW
=> use Optical to the Host

BW Limited

Electrical ToR

Hosts Scaling BW

BW Scalable Optical Network

Hosts Scaling BW

BW Scalable Optical Network
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But Most ODCNs Utilize Electrical ToR !!!

OSA

Optical DCN with Elastic OCS
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But Most ODCNs Utilize Electrical ToR !!!

OSA

Optical DCN with Elastic OCS

Mordia
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But Most ODCNs Utilize Electrical ToR !!!

OSA

HELIOS Optical DCN with Elastic OCS

Mordia
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But Most ODCNs Utilize Electrical ToR !!!

OSA

HELIOS Optical DCN with Elastic OCS

Proteus

Mordia
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But Most ODCNs Utilize Electrical ToR !!!

OSA

HELIOS Optical DCN with Elastic OCS

Proteus

End-to-End Scheduling for All-Optical DC

Mordia
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But Most ODCNs Utilize Electrical ToR !!!

OSA

HELIOS Optical DCN with Elastic OCS

Proteus

C-Through

End-to-End Scheduling for All-Optical DC

Mordia
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But Most ODCNs Utilize Electrical ToR !!!

OSA

HELIOS Optical DCN with Elastic OCS

Proteus

C-Through

End-to-End Scheduling for All-Optical DC

Mordia

DOS
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Why RotorNet cannot do Optical to the Host?

 RotorNet assumes each ToR connects to all M rotors
 With clear tradeoff between network latency and that number

 Connecting the hosts to all rotors is costly
 Most of today hosts utilize 1 or 2 ports of 4 lanes each

 Moreover, required host peak input bandwidth is M x lane bandwidth
 Since there is no coordination between senders to same host

Host

Lack of host input bandwidth scheduling
Prevents Optical to the Host

=> Must Schedule Host Inputs

1 M

ROTORS
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Server attached Optical eXpander
Prof’ Ankit Singla (Eth), 

Prof’ Michael Schapira (HUJI), 

Eitan Zahavi, Paraskevas Bakopoulos (Mellanox)
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Server attached Optical eXpander (SoX)

 Optical Expander provides 
 Low diameter
 Low cost (no multi-layer)
 High bandwidth via DWM

 Electrical 
 Low bandwidth network

Optical Xpander
Network

Optical 
ToR

Electrical
ToR

UE x BE
CU x UO x BO

Electrical Network
arbitrary

TE
TO

CD x HO x BO

HE x BE 

Host 1

E2O/O2E
O-Port

E-Port

Host 2

E2O/O2E
O-Port

E-Port

Host HO

E2O/O2E
O-Port

E-Port
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SoX Switch
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 Wavelength Selective Switches

 Input AWGs 
 Split the input to different colors

 MEMS 
 Per color
 A crossbar from every input to every output

 Output AWGs
 Act as DWM combiners
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SoX Switch
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SoX Switch Integration - The 3PEAT Technology

HHI 3D PolyBoard

 > 7 layers

 8x8 and 9x9 AWGRs

 >250 MMI couplers on a single chip

LioniX TriPleX

 PZT films on the top of TriPleX chips

 20ns target reconfiguration time

Combine PolyBoard with TriPlex platform to develop large photonic switches

Multi-layer polymer waveguide (HHI) PZT film on TriPlex switch (LioniX)

Target prototypes

36×36 active switch

72×72 AWGR
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SoX Scheduling

 Distributed and Scalable
 K Optical switches are managed by a single Allocation Agent (AA)
 The more Optical Switches the more agents

 High Level Algorithm
 Try N pre-calculated paths from source to destination
 Paths colors are preassigned
 AAs tracks the used colors on each output of the Optical Switches it manages
 When a request arrives to an AA it looks to see if the Output/Color pair are free
 If they are free
 Reserve the color and send the request to next Agent or back to the origin if none
 Configure the optical switch accordingly

 If not free send Backward Cancellation to previous AA

 When AA receive Backward/Forward Cancellation request 
 It send it to previous/next AA (if not last)

 Requestor uses the first reserved path

Alloc
Agent

Optical 
ToR

Alloc
Agent

Optical 
ToR

Alloc
Agent

Optical 
ToR

Alloc
Agent

Optical 
ToR

Dst Host

E2O/O2E
O-Port

E-Port

Alloc
Agent

Optical 
ToR

Src Host
E2O/O2E

O-Port
E-Port
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SoX Scheduling

 Distributed and Scalable
 K Optical switches are managed by a single Allocation Agent (AA)
 The more Optical Switches the more agents

 High Level Algorithm
 Try N pre-calculated paths from source to destination
 Paths colors are preassigned
 AAs tracks the used colors on each output of the Optical Switches it manages
 When a request arrives to an AA it looks to see if the Output/Color pair are free
 If they are free
 Reserve the color and send the request to next Agent or back to the origin if none
 Configure the optical switch accordingly

 If not free send Backward Cancellation to previous AA

 When AA receive Backward/Forward Cancellation request 
 It send it to previous/next AA (if not last)

 Requestor uses the first reserved path

Alloc
Agent

Optical 
ToR

Alloc
Agent

Optical 
ToR

Alloc
Agent

Optical 
ToR

Alloc
Agent

Optical 
ToR

Dst Host

E2O/O2E
O-Port

E-Port

Alloc
Agent

Optical 
ToR

1
2

3

1
2

3

1
2

3

1
2

3

1
2

3

A 1,2,2
A 2,2

A 3,2,1,2
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SoX Scheduling

 Distributed and Scalable
 K Optical switches are managed by a single Allocation Agent (AA)
 The more Optical Switches the more agents

 High Level Algorithm
 Try N pre-calculated paths from source to destination
 Paths colors are preassigned
 AAs tracks the used colors on each output of the Optical Switches it manages
 When a request arrives to an AA it looks to see if the Output/Color pair are free
 If they are free
 Reserve the color and send the request to next Agent or back to the origin if none
 Configure the optical switch accordingly

 If not free send Backward Cancellation to previous AA

 When AA receive Backward/Forward Cancellation request 
 It send it to previous/next AA (if not last)

 Requestor uses the first reserved path

Alloc
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Optical 
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Alloc
Agent

Optical 
ToR

Alloc
Agent
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Alloc
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A 2,2 A 2,1,2
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E2O/O2E

O-Port
E-Port
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SoX Scheduling

 Distributed and Scalable
 K Optical switches are managed by a single Allocation Agent (AA)
 The more Optical Switches the more agents

 High Level Algorithm
 Try N pre-calculated paths from source to destination
 Paths colors are preassigned
 AAs tracks the used colors on each output of the Optical Switches it manages
 When a request arrives to an AA it looks to see if the Output/Color pair are free
 If they are free
 Reserve the color and send the request to next Agent or back to the origin if none
 Configure the optical switch accordingly

 If not free send Backward Cancellation to previous AA

 When AA receive Backward/Forward Cancellation request 
 It send it to previous/next AA (if not last)

 Requestor uses the first reserved path

Alloc
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SoX Scheduling

 Distributed and Scalable
 K Optical switches are managed by a single Allocation Agent (AA)
 The more Optical Switches the more agents

 High Level Algorithm
 Try N pre-calculated paths from source to destination
 Paths colors are preassigned
 AAs tracks the used colors on each output of the Optical Switches it manages
 When a request arrives to an AA it looks to see if the Output/Color pair are free
 If they are free
 Reserve the color and send the request to next Agent or back to the origin if none
 Configure the optical switch accordingly

 If not free send Backward Cancellation to previous AA

 When AA receive Backward/Forward Cancellation request 
 It send it to previous/next AA (if not last)

 Requestor uses the first reserved path
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SoX Scheduling

 Distributed and Scalable
 K Optical switches are managed by a single Allocation Agent (AA)
 The more Optical Switches the more agents

 High Level Algorithm
 Try N pre-calculated paths from source to destination
 Paths colors are preassigned
 AAs tracks the used colors on each output of the Optical Switches it manages
 When a request arrives to an AA it looks to see if the Output/Color pair are free
 If they are free
 Reserve the color and send the request to next Agent or back to the origin if none
 Configure the optical switch accordingly

 If not free send Backward Cancellation to previous AA

 When AA receive Backward/Forward Cancellation request 
 It send it to previous/next AA (if not last)

 Requestor uses the first reserved path
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SoX Scheduling

 Distributed and Scalable
 K Optical switches are managed by a single Allocation Agent (AA)
 The more Optical Switches the more agents

 High Level Algorithm
 Try N pre-calculated paths from source to destination
 Paths colors are preassigned
 AAs tracks the used colors on each output of the Optical Switches it manages
 When a request arrives to an AA it looks to see if the Output/Color pair are free
 If they are free
 Reserve the color and send the request to next Agent or back to the origin if none
 Configure the optical switch accordingly

 If not free send Backward Cancellation to previous AA

 When AA receive Backward/Forward Cancellation request 
 It send it to previous/next AA (if not last)

 Requestor uses the first reserved path
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Conclusions

 Central Scheduler Architectures reach a Dead End

 New architectural innovations overcome that

 RotorNet – fixed schedule

 Distributed Scheduling 

 However, using Electrical Switches as ToRs is contradicting to our main ODCN motivation

 Optical Network Directly attached to the Host is avoiding the bottleneck

SOX = Server attached Optical Xpander
No bandwidth bottleneck

Distributed Scheduling
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